THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW9 Solution

Yan Lung Li

1. (P. 252 Q7) Since $\left(f_{n}\right)$ converges uniformly to f on A, choose $\epsilon=1$, there exists $N \in \mathbb{N}$ such that for all $n \geq N,\left\|f_{n}-f\right\|_{A}<1$. In particular, consider $n=N$, then by assumption there exists $M_{N} \in \mathbb{R}$ such that for all $x \in A,\left|f_{N}(x)\right| \leq M_{N}$. Therefore, for all $x \in A,|f(x)| \leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)\right|<1+M_{N}$. Therefore, f is bounded on A.
2. (P. 252 Q8) For each $n \in \mathbb{N}$, we claim that $f_{n}(x)$ is bounded on $[0,+\infty)$: on $[0,1]$,

$$
\left|f_{n}(x)\right|=\left|\frac{n x}{1+n x^{2}}\right| \leq n
$$

on $[1,+\infty)$,

$$
\left|f_{n}(x)\right|=\left|\frac{n x}{1+n x^{2}}\right| \leq\left|\frac{n x^{2}}{1+n x^{2}}\right|<1
$$

Therefore, for all $x \in[0,+\infty),\left|f_{n}(x)\right| \leq n$, and hence f_{n} is bounded for each $n \in \mathbb{N}$.
Fix each $x \in[0,+\infty)$, then $\lim _{n \rightarrow \infty} \frac{n x}{1+n x^{2}}=\lim _{n \rightarrow \infty} \frac{x}{\frac{1}{n}+x^{2}}= \begin{cases}0 & x=0 \\ \frac{1}{x} & x \neq 0\end{cases}$
Therefore, the pointwise limit of $\left(f_{n}\right)$ is given by $f(x)=\left\{\begin{array}{ll}0 & x=0 \\ \frac{1}{x} & x \neq 0\end{array}\right.$. Since $\lim _{x \rightarrow 0^{+}} f(x)=+\infty, f$ is not bounded on $[0, \infty)$.

If $\left(f_{n}\right)$ converges uniformly to f on $[0,+\infty)$, then by the result of $\mathrm{Q} 7, f$ is also bounded on $[0,+\infty)$, which is a contradiction. Therefore, $\left(f_{n}\right)$ does not converge uniformly to f on $[0,+\infty)$.
3. (P. 252 Q12) We first show that $f_{n}(x)=e^{-n x^{2}}$ converges uniformly to 0 on $[1,2]$: since $e^{n x^{2}} \geq n x^{2} \geq n$ for all $n \in \mathbb{N}$ and $x \in[1,2],\left|f_{n}(x)-0\right|=e^{-n x^{2}} \leq \frac{1}{n}$. Therefore, $\left\|f_{n}\right\|_{[1,2]} \leq \frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, by Lemma 8.1.8, $f_{n}(x)=e^{-n x^{2}}$ converges uniformly to 0 on $[1,2]$.

Therefore, by Theorem 8.2.4, $\lim _{n \rightarrow \infty} \int_{1}^{2} e^{-n x^{2}} d x=\int_{1}^{2} 0 d x=0$.

