THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW9 Solution

Yan Lung Li

- 1. (P.252 Q7) Since (f_n) converges uniformly to f on A, choose $\epsilon = 1$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $||f_n f||_A < 1$. In particular, consider n = N, then by assumption there exists $M_N \in \mathbb{R}$ such that for all $x \in A$, $|f_N(x)| \leq M_N$. Therefore, for all $x \in A$, $|f(x)| \leq |f(x) f_N(x)| + |f_N(x)| < 1 + M_N$. Therefore, f is bounded on A.
- 2. (P.252 Q8) For each $n \in \mathbb{N}$, we claim that $f_n(x)$ is bounded on $[0, +\infty)$: on [0, 1],

$$|f_n(x)| = \left|\frac{nx}{1+nx^2}\right| \le n$$

on $[1, +\infty)$,

$$|f_n(x)| = \left|\frac{nx}{1+nx^2}\right| \le \left|\frac{nx^2}{1+nx^2}\right| < 1$$

Therefore, for all $x \in [0, +\infty)$, $|f_n(x)| \leq n$, and hence f_n is bounded for each $n \in \mathbb{N}$.

Fix each
$$x \in [0, +\infty)$$
, then $\lim_{n \to \infty} \frac{nx}{1+nx^2} = \lim_{n \to \infty} \frac{x}{\frac{1}{n}+x^2} = \begin{cases} 0 & x=0\\ \frac{1}{x} & x \neq 0 \end{cases}$
Therefore, the pointwise limit of (f_n) is given by $f(x) = \begin{cases} 0 & x=0\\ \frac{1}{x} & x \neq 0 \end{cases}$. Since $\lim_{x \to 0^+} f(x) = +\infty$, f is not bounded on $[0, \infty)$.

bounded on $[0,\infty)$.

If (f_n) converges uniformly to f on $[0, +\infty)$, then by the result of Q7, f is also bounded on $[0, +\infty)$, which is a contradiction. Therefore, (f_n) does not converge uniformly to f on $[0, +\infty)$.

3. (P.252 Q12) We first show that $f_n(x) = e^{-nx^2}$ converges uniformly to 0 on [1,2]: since $e^{nx^2} \ge nx^2 \ge n$ for all $n \in \mathbb{N}$ and $x \in [1,2]$, $|f_n(x) - 0| = e^{-nx^2} \le \frac{1}{n}$. Therefore, $||f_n||_{[1,2]} \le \frac{1}{n} \to 0$ as $n \to \infty$. Therefore, by Lemma 8.1.8, $f_n(x) = e^{-nx^2}$ converges uniformly to 0 on [1, 2].

Therefore, by Theorem 8.2.4, $\lim_{n \to \infty} \int_{1}^{2} e^{-nx^{2}} dx = \int_{1}^{2} 0 dx = 0.$